Пятница, 26 Апр. 2024

Клевые тачки

Ваше мнение

Чьему производителю авторезины Вы доверяете?
 
Конструкция автомобиля - В гоночных спортивных автомобилях
Индекс материала
Конструкция автомобиля
ОСОБЕННОСТИ КАЛИЛЬНОГО ЗАЖИГАНИЯ И ДЕТОНАЦИОННОГО СГОРАНИЯ И ЗАВИСИМОСТЬ МЕЖДУ НИМИ
После первой мировой войны
Хорошим топливом зарекомендовал себя этиловый спирт
Процесс сгорания — турбулентность и детонационное сгорание.
влияния тетраэтилового свинца
ОПРЕДЕЛЕНИЕ И СПОСОБЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АНОМАЛЬНЫХ ПРОЦЕССОВ СГОРАНИЯ
Калильное зажигание
Термин грохот
ВЫЯВЛЕНИЕ И ИЗМЕРЕНИЕ ПАРАМЕТРОВ ПРОЦЕССОВ ДЕТОНАЦИОННОГО СГОРАНИЯ И ПРЕЖДЕВРЕМЕННОГО КАЛИЛЬНОГО ЗАЖИГАНИЯ
детонационное сгорание
Преждевременное калильное зажигание
ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ТОПЛИВ
«Снам-Прогетти»
Подогревание катушки
ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ И ДЕТОНАЦИОННОЕ СГОРАНИЕ
Регулировка момента зажигания
расчеты степени полноты сгорания
степень сжатия
Температурные режимы двигателя
ТЕОРИИ ДЕТОНАЦИОННОГО СГОРАНИЯ
ЗОНА ПОСЛЕДНЕЙ ЧАСТИ ЗАРЯДА
ТЕОРИЯ ДЕТОНАЦИИ
Детонационные волны
ТЕОРИЯ САМОВОСПЛАМЕНЕНИЯ
Присутствие тетраэтилсвинца
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЗОНЫ ПОСЛЕДНЕЙ ЧАСТИ ЗАРЯДА И САМОВОСПЛАМЕНЕНИЯ В ДВИГАТЕЛЕ
Тетраэтиловый свинец
СПОСОБЫ ПРЕДОТВРАЩЕНИЯ ДЕТОНАЦИОННОГО СГОРАНИЯ
Анализ ситуации в США и ФРГ проведен Дартнеллом.
В соответствии с современной теорией коагуляции
ЗАКЛЮЧЕНИЕ
РАБОТА ДВИГАТЕЛЯ ОТ САМОВОСПЛАМЕНЕНИЯ
ПРЕЖДЕВРЕМЕННОЕ И ПОСЛЕДУЮЩЕЕ КАЛИЛЬНОЕ ЗАЖИГАНИЕ
ВЛИЯНИЕ ХАРАКТЕРИСТИК ЭКСПЛУАТАЦИОННЫХ РЕЖИМОВ ДВИГАТЕЛЯ
ВЛИЯНИЕ СОСТОЯНИЯ ПОВЕРХНОСТИ УЧАСТКОВ КАЛИЛЬНОГО ЗАЖИГАНИЯ
Температура воспламенения метанового топлива
Каталитическое «преждевременное калильное зажигание»
СКЛОННОСТЬ ТОПЛИВ К ПРЕЖДЕВРЕМЕННОМУ КАЛИЛЬНОМУ ЗАЖИГАНИЮ
ПРАКТИЧЕСКИЕ МЕТОДЫ СНИЖЕНИЯ ДЕТОНАЦИИ В ДВИГАТЕЛЯХ
Выполнение требований по токсичности
впрыск топлива за впускным клапаном
Устройство для непрерывной подачи однородной топливо-воздушной смеси
Зажигание
Возрастание требований к октановому числу топлива
Допустимые при производстве отклонения размеров камеры сгорания
Вихревое движение
Турбулентность
Пульсации
В гоночных спортивных автомобилях
Наилучший антидетонационный показатель
Следующий шаг на пути совершенствования экономичных двигателей
Фронт пламени
«Тексако TCCS»
ОБЩИЕ ВЫВОДЫ
ТРЕНИЕ И СМАЗКА В АВТОМОБИЛЯХ
ОСНОВЫ ТЕОРИИ СМАЗКИ И ИЗНОСА
Влияние повышения температуры поверхности
Первые научные исследования в области теории подшипников
Соотношения ЭГД-теории
Графит и дисульфид молибдена
ВЛИЯНИЕ ЭКСПЛУАТАЦИОННЫХ ФАКТОРОВ
СВОЙСТВА ЛИСТОВЫХ ФОРМОВОЧНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ
ПОГЛОЩЕНИЕ ВЛАГИ
ПРОЧНОСТЬ СОЕДИНЕНИЯ ВНАХЛЕСТКУ ПРИ СДВИГЕ
ДЕМПФИРОВАНИЕ КОЛЕБАНИЙ
ПОГЛОЩЕНИЕ ВЛАГИ
АЭРОДИНАМИКА АВТОМОБИЛЕЙ
ОСНОВНЫЕ ТРЕБОВАНИЯ К ФОРМЕ АВТОМОБИЛЯ
ВЛИЯНИЕ СОПРОТИВЛЕНИЯ НА ТОПЛИВНУЮ ЭКОНОМИЧНОСТЬ
РАСХОД ТОПЛИВА, ОБУСЛОВЛЕННЫЙ АЭРОДИНАМИЧЕСКИМ СОПРОТИВЛЕНИЕМ
УСИЛЕНИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ПРИ ВЕТРЕ
ЕЗДОВЫЕ ЦИКЛЫ ЕРА, СООТВЕТСТВУЮЩИЕ УСЛОВИЯМ ДВИЖЕНИЯ В ГОРОДЕ И ПО ШОССЕ
ВОЗМОЖНОСТИ ПОВЫШЕНИЯ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ В РЕЗУЛЬТАТЕ УМЕНЬШЕНИЯ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
МЕХАНИЗМЫ ОБРАЗОВАНИЯ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
СОСТАВЛЯЮЩИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПЕРЕДНЕЙ ЧАСТИ КУЗОВА
Принципы минимизации аэродинамического сопротивления
АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ЗАДНЕЙ ЧАСТИ КУЗОВА
Трехмерный отрыв потока
Критические конфигурации
Один из случаев критической конфигурации
увеличение донного давления
метод уменьшения сопротивления
Эксперименты Сайкса
Кузова автомобилей весьма разнообразны
Результаты исследований
ВИХРЕВОЕ СОПРОТИВЛЕНИЕ
Движущая сила потока
ВЛИЯНИЕ БЛИЗОСТИ ЗЕМЛИ
численное решение
близость поверхности земли оказывает большое влияние на величину подъемной силы
влияние угла набегания потока
ТУРБУЛЕНТНОСТЬ НАБЕГАЮЩЕГО ПОТОКА
МАЛЫЕ СОСТАВЛЯЮЩИЕ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
Испытания в аэродинамических трубах
Вращающиеся колеса
АЭРОДИНАМИЧЕСКАЯ НАСТРОЙКА ФОРМЫ АВТОМОБИЛЯ
ЭМПИРИЧЕСКИЕ ПРАВИЛА СОЗДАНИЯ КОНСТРУКЦИЙ МАЛОГО СОПРОТИВЛЕНИЯ
ПРИМЕНЕНИЕ ЭВМ ДЛЯ АЭРОДИНАМИЧЕСКИХ РАСЧЕТОВ
поток вблизи поверхности автомобиля и прицепа
СТРАТЕГИЧЕСКИЕ НАПРАВЛЕНИЯ ДОСТИЖЕНИЯ НИЖНИХ ПРЕДЕЛОВ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
ПОБОЧНЫЕ АЭРОДИНАМИЧЕСКИЕ ЭФФЕКТЫ
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ
МЕТОДЫ ПОДБОРА СИЛОВОЙ ПЕРЕДАЧИ И ПРОГНОЗИРОВАНИЯ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ
РАБОЧИЙ ОБЪЕМ И ЭФФЕКТИВНОСТЬ ТЕПЛОИСПОЛЬЗОВАНИЯ ДВИГАТЕЛЯ
КОРОБКИ ПЕРЕДАЧ
два режима переключения передач:
Потери в трансмиссии
Бесступенчатые коробки передач
диапазон передаточных чисел бесступенчатой передачи
ПОТЕРИ НА РАБОТУ ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ
ВЛИЯНИЕ ХАРАКТЕРИСТИК АВТОМОБИЛЯ НА ТОПЛИВНУЮ ЭКОНОМИЧНОСТЬ
РАСЧЕТЫ НА ЭВМ ТОПЛИВНОЙ ЭКОНОМИЧНОСТИ И ХАРАКТЕРИСТИК АВТОМОБИЛЯ
Случай трансмиссии с ручным переключением передач
расчет начинается о двигателя
ОГРАНИЧЕНИЯ НА ХАРАКТЕРИСТИКИ СИЛОВОЙ ПЕРЕДАЧИ
РЕЗУЛЬТАТЫ ПОДБОРА СИЛОВОЙ ПЕРЕДАЧИ
ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ДВИГАТЕЛЕМ
ТРЕБОВАНИЯ К ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ И ПОКАЗАТЕЛЯМ АВТОМОБИЛЯ
ТЕОРИЯ УПРАВЛЕНИЯ
ОБЗОР МЕТОДОВ УПРАВЛЕНИЯ
Задача оптимизации
КОНЦЕПЦИЯ УПРАВЛЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ КАТАЛИТИЧЕСКИХ НЕЙТРАЛИЗАТОРОВ ТРОЙНОГО ДЕЙСТВИЯ
РАБОТА В РЕЖИМЕ ЗАМКНУТОГО ЦИКЛА
РАБОТА В РЕЖИМЕ ОТКРЫТОГО ЦИКЛА
Обычный карбюратор
После завершения периода подачи топлива
ЭЛЕКТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ
Все страницы

 

В гоночных спортивных автомобилях в течение длительного времени предпочтение отдавалось конструкции, в которой четырехклапанная головка служит крышкой, с центрально расположенной свечой зажигания. Камера сгорания такой конструкции характеризуется высоким коэффициентом наполнения, малым расстоянием движения пламени, турбулентностью, образующейся в результате перемешивания двух потоков впрыскиваемой смеси, и меньшей потребностью создания пульсаций. Такая конструкция не подходит для двигателей с большой степенью сжатия, поскольку зона горения при этом становится узкой, пламя рано гасится, и сильно увеличиваются выделения углеводородов. С другой стороны, эта конструкция идеальна для двигателей с турбонаддувом, степень сжатия у которых может быть близкой к 9 : 1.

Если требуется, чтобы такой двигатель был очень мощным, то цилиндр делается таким, чтобы его диаметр превосходил ход поршня (камера сгорания имеет приплюснутую форму). Это позволяет увеличить площадь клапанных отверстий и получить высокий коэффициент наполнения при большой частоте вращения коленчатого вала двигателя и умеренной скорости движения поршня. В этом случае вследствие чрезмерной сплюснутости камеры сгорания выделения углеводородов велики и путь, проходимый пламенем, тоже велик.

Более простым решением является полусферическая камера сгорания с двумя клапанами. Потери теплоты в такой камере сгорания невелики, поскольку отношение площади поверхности стенок к объему мало, турбулентность в такой камере при вихревом движении заряда сохраняется хорошо и, кроме того, в ней отсутствуют выступающие элементы, которые могут быть местами, вызывающими преждевременное калильное зажигание.

Хорошие условия движения газов обеспечиваются наклонным расположением клапанов, но до последнего времени выпуск двигателей с такими камерами сгорания сдерживался из-за необходимости большого наклона клапанов. Компромиссным решением является размещение половины камеры сгорания в поршне при почти вертикальном расположении клапанов — двояковыпуклая камера сгорания.

Плодотворные исследования в области поисков лучших камер сгорания были осуществлены Хероном, пытавшимся реализовать максимально возможные экономичность, мощность и степень сжатия при использовании топлив, которые появились в то время (1950 г.) с октановым числом 100, определенным исследовательским методом. Он также стремился создать камеру сгорания, в которой октановые числа чувствительных топлив были как можно ближе к определенным исследовательским методом октановым числам, которые он назвал «механическими октановыми числами» (по терминологии Кеттеринга из «Дженерал моторе»).

Его исследования были сосредоточены на рассмотрении конструкции с двумя клапанами с плоской головкой цилиндра. Впускной клапан мог снабжаться специальной ширмой (для создания турбулентного потока), а днище поршня могло быть плоским или иметь центральную полость, занимающую 55 % площади и способствующую образованию пульсации (рис. 6.13). Заменяя поршни, можно было изменять величину степени сжатия от 5 : 1 до 30 : 1.